بررسی (?,?)-مترهای فینسلری به طور تصویری مسطح
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم
- نویسنده اکبر خسروی
- استاد راهنما بهمن رضایی
- سال انتشار 1392
چکیده
در این پایان نامه، متر f= (?+?)?+1/?? و متر ماتسوموتوf=?2/?-? که در آن ?=(aijyiyj)1/2 متر ریمانی، ?=biyi یک 1- فرمی و? یک عدد حقیقی دلخواهی که ?? -1,0,1 است در نظر گرفته می شود. ثابت می شود که این مترهای فینسلر به طور تصویری مسطح هستند اگر و فقط اگر? به طور تصویری مسطح و? نسبت به ? موازی باشد. این نتایج همچنین برای تقریب متر ماتسوموتو بدست می آیند. علاوه بر این نشان می دهیم که f= (?+?)?+1/?? موضعاً به طور تصویری مسطح با انحنای پرچمی ثابت است اگر و فقط اگر fمینکوفسکی باشد.
منابع مشابه
یک کلاس تصویری روی مترهای فینسلری
دسته بندی کردن مترهای راندرزی از نوع داگلاس-ویل تعمیم یافته
15 صفحه اولمتریک های فینسلری به طورموضعی دوگان مسطح
متر های فینسلری به طور موضعی دوگان مسطح از هندسه داده ها به وجود آمده اند. چنین مترهایی خواص هندسی ویژه ای دارند و نقش مهمی در هندسه فینسلر بازی می کنند. در این پایان نامه یک کلاس از مترهای فینسلری به سور موضعی دوگان مسطح که به صورت جمع یک متر ریمانی و یک 1-فرم تعریف شده اند را بررسی می کنیم و آن ها را با انحنای پرچمی تقریبا ایزوتروپیک دسته بندی می کنیم.
بررسی مترهای فینسلری از انحنای s ثابت
در این پایان نامه، مترهای فینسلری از انحنای s ثابت را مطالعه می کنیم. ابتدا مترهای راندرزی با انحنای s غیرصفر(ثابت) که انحنای h صفر دارند را بررسی خواهیم کرد، که مثال نقصی برای قضیه ای در[24] می باشند. سپس با استفاده ساخته های لی و شن، نشان می دهیم (α ، β)-مترهایی با انحنای s ثابت دلخواه در هر بعد وجود داشته و غیرراندرزی می باشند.
15 صفحه اولمترهای فینسلری با انحنای لندزبرگی خاص
در این پایان نامه به مطالعه دسته هایی از مترهای فینسلری شامل p-کاهشی و لندزیرگی ایزوتروپیک نسبتا عمومی به عنوان حالت خاص می پردازیم و نشان می دهیم روی منیفلد فینسلری فشرده، این دسته از مترهای فینسلری همان مترهای راندرزی هستند. سپس دسته ای از این مترها را که دارای انحنای پرچمی اسکالر بوده بررسی کرده و شرایطی را بیان می کنیم که تحت آنها دسته مذکور به مترهای راندرزی تبدیل شوند.
15 صفحه اولمترهای فینسلری ریشه -m ام انیشتین
در این پایان نامه متر های ریشه -mام انیشتینی را مورد بررسی قرار داده و نشان می دهیم که اگر f یک متر انیشتینی ریشه -mام باشد ، یعنی ric=(n -1 ) kf*f که در آن k یک تابع اسکالر می باشد ،آنگاهk=0 لذا ric=0. همچنین این خاصیت را برای متر های ریشه m-ام انیشتن ضعیف شده مورد بررسی قرار می دهیم. لازم به ذکر است مطالب ذکر شده از مقاله زیر است: y. yu and y. you, on einstein m-th...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023